
1

Faculty of Electrical Engineering,

Mathematics & Computer Science

Data Labeling Platform
Design project report

Abdelrahman Eshy

Zaid Magzoub

Daan Dieperink

Noah Viste

Sietze Van Der Vinne

Supervisor:
prof. Nacir Bouali

Technical Computer Science Department
Faculty of Electrical Engineering,

Mathematics and Computer Science
University of Twente

P.O. Box 217
7500 AE Enschede
The Netherlands

II

Abstract

Data labeling allows AI and machine learning algorithms to build an ac-
curate understanding of real-world environments and conditions, and the
data labeling market expects to grow at a compound annual growth rate
(CAGR) of 30% by 2027 to a massive US$5.5 billion in value”[1]. Data
labeling is adding informative and meaningful labels to different types of
data such as images, text files, and videos. This makes it machine com-
patible in a way that it can understand and analyze the information to give
the results accordingly. In many cases, researchers and teachers (who
might need data for their course projects) would like to work with data
they have acquired or generated, but are rarely labeled or adequately la-
beled. In this project, a developed web application will get more widely
materialized and developed where the teacher/researcher from the UT
can initiate a data labeling task for non-staff members to interact with the
platform. In this project, our group developed a web application where
researchers within the University of Twente can crowdsource the process
of labeling datasets for their academic research efforts. The web appli-
cation has been developed using the Django web framework written in
Python.

iii

IV ABSTRACT

Contents

Abstract iii

1 Introduction 1
1.1 Motivation . 1
1.2 Framework . 2
1.3 Goals of the platform . 2
1.4 Functional overview . 3

2 Domain Analysis 5
2.1 Introduction to the Domain 5
2.2 General Knowledge of the Domain 5
2.3 Client, Users, and interested Parties 5
2.4 Software Environment . 6
2.5 Procedures of the current situation 6
2.6 Commonalities of UT Software 7
2.7 Conclusions . 7

3 Methodology and Requirement Specification 9
3.1 Agile Project Management 9
3.2 Requirement prioritization 9
3.3 Functional requirements . 10
3.4 Non-Functional Formulation 10
3.5 Conclusions . 11

4 GLOBAL AND ARCHITECTURAL DESIGN 13
4.1 Revised Work Process . 14
4.2 Preliminary Design Choices 16

4.2.1 Programming Language 16
4.2.2 Frameworks and Libraries 16
4.2.3 Architectural Design Choices 17

v

VI CONTENTS

5 DETAILED DESIGN 21
5.1 System Description . 21

5.1.1 Database Scheme 21
5.1.2 Dataset Processing 21
5.1.3 Authorization Checks 23

5.2 Front-end components . 23
5.2.1 Task list . 24
5.2.2 Task creation page 24
5.2.3 Task overview . 24
5.2.4 Dataset overview . 25
5.2.5 Datapoint list . 25
5.2.6 Labeling page . 26
5.2.7 Profile page . 27
5.2.8 Task application page 28

6 Testing the system 29
6.1 Usability testing . 29
6.2 Integration testing . 30

7 Future Planning 31
7.1 Use and Support of the System 31
7.2 University wide Enrolment 31
7.3 Text labeling extension . 32
7.4 Image labeling . 32

8 Evaluation 33
8.1 Planning . 33
8.2 Responsibilities . 33
8.3 Team Evaluation . 34
8.4 Final Result . 34
8.5 Conclusion . 34

A Source code 35
A.1 Link to the source code . 35

B Design Diary 37
B.1 Requirements Proposal . 37
B.2 Mock-ups Proposal . 37
B.3 System Introduction . 38
B.4 Usability Tests . 38
B.5 Proposal Presentation . 38

CONTENTS VII

B.6 Results of meetings . 38

Appendices

VIII CONTENTS

Chapter 1

Introduction

Labeling data for data-driven projects such as machine learning can be
challenging. This project aims to develop a web application that serves
as an online platform where dataset labeling can be crowdsourced by
other members of the University of Twente. The web application should
ease the process of labeling data as much as possible.

Staff members should be able to upload their unlabelled datasets to the
platform, creating a new data labeling task. Afterward, other members of
the University should be able to provide labels for the data from within the
web application.

Finally, the creator of the task should be able to download their dataset,
now populated with labels. The labeling process should get done through
an efficient interface, so the time cost of labeling the data can be low.

1.1 Motivation

Machine learning has become an essential part of the world as we know
it. By leveraging the enormous amounts of data that is available from var-
ious means of computer interaction, machine learning algorithms have
taken over functions in many different domains. However, not all data is
created equally. Many datasets, including those used by researchers at
the University, require the addition of labels or other extra information be-
fore they can be properly used with statistical algorithms such as super-
vised learning. This process of labeling the previously unlabeled datasets
can be tedious and was previously done by the researchers themselves,
which could take up a lot of valuable time. Data labeling is often diffi-

1

2 CHAPTER 1. INTRODUCTION

cult to automate with machine learning algorithms themselves, since the
training of these algorithms requires having access to large amounts of
labeled data in the first place.

The Data Labeling Platform as discussed in this report aims to allow stu-
dents and other members of the University of Twente to perform this task
of data labeling, giving the researchers much easier access to the la-
beled data they need. Moreover, the platform can act as data storage for
researchers, so they will be able to upload large datasets to the platform
and share them with other researchers without the need of an external
data sharing platform; the Data Labeling Platform contains everything
necessary to share data with other researchers if that is desired. Option-
ally, researchers may choose to compensate students for their labeling
efforts through the UT Flex payment system, incentivizing them to label
large amounts of data.

1.2 Framework

The platform is designed and implemented using Django. Django is a
free, open-source, Python-based web framework that follows a modular
model–template–views architectural pattern.

In order for the platform to be compatible with the university of Twente
it is implemented in accordance with the university login system. As the
authentication framework is modular, the current Google implementation
can be replaced with the Microsoft login system as needed.

The database is a critical element of the platform, designed and im-
plemented using PostgreSQL in coordination with Django. This platform
framework is secured and follows standard privacy practices. Hence, the
data cannot be viewed or accessed by another user. Another user can
only access the data if the user sets it to public or shares it.

1.3 Goals of the platform

The goal of this platform is to make the labeling of data as easy and
as fast as possible. Access to the platform should be by the university
members only, considering the platform’s privacy and confidentiality to

1.4. FUNCTIONAL OVERVIEW 3

deliver a safe and trusted platform. Additionally the platform should also
act as a billboard for the teachers to find new potential labelers. Allowing
students to apply to it with a motivation letter.

1.4 Functional overview

This platform is currently only compatible with the university of Twente, as
such it requires a university account to access the platform. When a user
logs in using their university credentials, they are assigned one of the two
roles: the student or the teacher. The teacher has access to all student
functionalities as well as all the required administrative functions.

Each user can see all the tasks they have been assigned and the tasks
that are open for applications. The user can then send an application
with a motivation letter to the teacher that owns that task. The teacher
on the other hand can see all the applications and accept or reject them.
When any user has a task, they can see all the datasets that have been
uploaded by the teacher in charge, read any instructions shown, and start
labeling.

The teachers are able to create tasks for datasets that needs to be la-
beled. Each tasks requires the teacher to fill in all the labels that can be
used. All the datasets uploaded in that task will be labeled following those
criteria.

The platform tracks the time spent on the platform as well as tracking
the amount of uploaded data and the amount of labeled data, which is
helpful for hours declaration.

4 CHAPTER 1. INTRODUCTION

Chapter 2

Domain Analysis

Domain analysis is the procedure of identifying and apprehending domain
knowledge about the problem domain to make it reusable when creating
new systems.

2.1 Introduction to the Domain

The system domain for this platform concerns the procedure of provid-
ing a web application for the university of Twente members for uploading
data and labeling the data. This system is for helping students to upload
much data as they require and can let other users download part of the
uploaded data. Furthermore, the system provides the user to label the
data or request to label other users’ data.

2.2 General Knowledge of the Domain

The University of Twente has different educational majors and depart-
ments for each faculty. Each faculty has it is own domain of proficiency.
So, that means that the system requirements might differ for each depart-
ment. Hence, the system has to determine these differences to dispense
to the whole university.

2.3 Client, Users, and interested Parties

The most notable stakeholders of the platform are staff members at the
University of Twente that need access to labeled data for their academic

5

6 CHAPTER 2. DOMAIN ANALYSIS

endeavors, or wish to share datasets with other members of the Univer-
sity. In addition, students with an interest in helping research, or who wish
to earn some money through a UT Flex contract set up by a researcher,
are potentially interested in the platform. Some students may also need
to have a dataset labeled for their own research conducted during their
study. These students can request a maintainer to have their permissions
on the platform elevated, so that they are able to create a new labeling
task as well, and are able to request help from their peers with labeling
the data.

2.4 Software Environment

Since the client had no strict requirements regarding the development
environment of choice for the project, we were able to choose the frame-
work that was deemed the most fitting for this project. We found the
web development framework Django1 the most fitting. Which uses the
Python programming language2. The system is developed to run within
a Linux environment. However, the application and its dependencies can
be run through Docker containers, allowing it to be easily deployed on
different machines, and even on different architectures such as Windows
machines. The reasons behind these software choices, and more de-
tailed explanations of the software architecture can be found in section
4.2.

2.5 Procedures of the current situation

The platform in the current situation starts with the user logging into the
platform using the university login system. Then, the user can view his
profile and upload data on the platform with the option of sharing this
data. In addition, The user can label his uploaded data or apply to label
other user data. Nonetheless, the non-student user has the feature of re-
questing other students to label their uploaded data. Applying for labeling
other user data consists of sending motivational reasons for labeling, and
this reason will be sending the requested user, and he makes the selec-
tion. Nevertheless, The users can edit and delete their uploaded data on
the platform.

1https://www.djangoproject.com/
2https://www.python.org/

2.6. COMMONALITIES OF UT SOFTWARE 7

2.6 Commonalities of UT Software

The platform users also employ other software dispensed at the university
of Twente. Hence, the UT sign-in credentials and utilizing a similar design
in the platform. These commonalities should make the platform familiar
to users.

2.7 Conclusions

Indicating the methodologies and necessity of the supportive system is
stated in analyzing the domain for the developed system. Likewise, the
development contains the identification of the entire stakeholders’ roles.

8 CHAPTER 2. DOMAIN ANALYSIS

Chapter 3

Methodology and Requirement
Specification

This chapter covers the development strategy, as well as the functional
and non-functional requirements that identified for the platform.

3.1 Agile Project Management

Project development is a complex system that requires forethought in or-
der to have a smooth development process. This is especially important
when it involves cooperating with a client. The Agile methodology is one
of the available solutions which aims to pave the way for a successful
project deployment. As Agile follows a strict development cycle, it has
limitations with regards to the the team dynamics. Therefore this project
follows a variation of the Agile methodology. The core tenets of Agile are
still present, however the development cycle is replaced with softer sprint
deadlines instead.

Despite the changes made to the Agile development, it was chosen
due to the importance of the client-centric approach. Ensuring that the
final product is in line with their vision and expectations. It is also bene-
ficial in ensuring that the development does not stagnate completely as
the client meetings prompts incremental improvements.

3.2 Requirement prioritization

The formulated requirements are prioritized based on the importance
of the functionality and its impact on stakeholders. The prioritization is

9

10 CHAPTER 3. METHODOLOGY AND REQUIREMENT SPECIFICATION

based on the client’s declaration, which is essential to the platform as
well as the feasibility of the implementation.

3.3 Functional requirements

• As a researcher, I want to have access to the labeled data

• As a researcher, I want to be able to create multiple labeling tasks

• As a researcher, I want multiple labelers to be able to work on a
task at the same time

• As a researcher, I want to be able to upload unlabeled data

• As a researcher, I want to be able to download a labeled version of
previously uploaded data

• As a researcher, I want to be able to upload labeled data to be used
as an example

• As a researcher, I want to be able to set the labeling task as either
invite-only or public

• As a researcher, I want to be able to advertise a labeling task so
that labelers can apply for it with a motivational letter

• As an admin, I want the website to track the amount of time spent
and the number of data points labeled by each user so the labeler
can be correctly remunerated

• As an admin, I want the labelers to be able to label data and be
unable to create new labeling tasks

• As a labeler, I want the data labeling to have an efficient workflow
so that I can label large amounts of data easily

• As a labeler, I want to be able to apply for a labeling task.

3.4 Non-Functional Formulation

• As a user, I want to be able to log in using the university system so
that I don’t need to create an account

3.5. CONCLUSIONS 11

• As an international user, I want the website to support English

• As a researcher, I want labeled text data provided in CSV format so
that I can parse the results

3.5 Conclusions

Identifying the platform requirements is part of system engineering, and
these techniques are part of it. These techniques help create the ex-
pected platform.

12 CHAPTER 3. METHODOLOGY AND REQUIREMENT SPECIFICATION

Chapter 4

GLOBAL AND
ARCHITECTURAL DESIGN

This chapter includes the global and architectural design preferences and
provides a general overview of the system’s structure.

13

14 CHAPTER 4. GLOBAL AND ARCHITECTURAL DESIGN

4.1 Revised Work Process

The platform serves to centralize and improve upon the work procedures
of University researchers regarding data labeling. Figure 4.1 shows the
revised work processes for staff members as well as labelers.

4.1. REVISED WORK PROCESS 15

Figure 4.1: The procedure of labeling a dataset using the Data Labeling
Platform

16 CHAPTER 4. GLOBAL AND ARCHITECTURAL DESIGN

4.2 Preliminary Design Choices

Well-advised preliminary design choices are crucial for the project’s start.
The expertise and skills of the project team are some factors to consider
in these choices, with regards to the selected programming languages
and frameworks. The following sections will elaborate on the selection of
these choices.

4.2.1 Programming Language

This project’s primary programming language is Python. Python seemed
the most suited for the project since every team member had experience
with it, and the language is generally designed to produce understand-
able code within reasonable timeframes. Additionally, HTML, CSS, and
Javascript are the front-end programming languages used for this plat-
form’s implementation, as they are required for any standard web appli-
cation.

4.2.2 Frameworks and Libraries

The web framework chosen for this platform’s development is Django.
Django is a high-level framework that is well-documented and highly scal-
able. Due to the many available features and extension libraries, Django
facilitates rapid development and practical design. Besides, Django pro-
vides various security features by default, such as measures preventing
SQL injection, cross-site request forgery and cross-site scripting attacks.

The library Django-Allauth1 has been chosen to provide the authentica-
tion mechanism for authenticating University of Twente members. This
library can connect to the Google OAuth system to log users in. Since
Google OAuth allows for the restriction of logins to members of a specific
organization, the login procedure can easily be restricted to University
members only.

1https://github.com/pennersr/django-allauth

4.2. PRELIMINARY DESIGN CHOICES 17

4.2.3 Architectural Design Choices

System components

Although a Django application can be run as a single, standalone pro-
cess, adding some other programs to the deployment stack can provide
some benefits.

For the database, Django uses an SQLite implementation by default, but
we configured it to use PostgreSQL as a backend instead, because it is
better at performing complex queries and is more reliable.

The application contains some heavy-duty code related to the parsing
of dataset uploads and exporting labeled data. With a standard Django
setup, this code cannot run asynchronously and will have to be executed
within the request-response cycle of the server. As a result, someone
who just uploaded a dataset would have to wait for the entire dataset to
be processed while their browser is still waiting for a server response.
For large datasets, this could make the users wait for long periods of time
while blocking the busy server process from responding at all. Not only
would this be annoying, it would also allow users to (accidentally) denial-
of-service attack the application by uploading a couple huge datasets. To
mitigate this issue, we use the Python task queue celery2 for the pro-
cessing of datasets. Using celery, the expensive computations can be
delegated to a different process, which frees up valuable resources to
the application. If the task queue would ever fill up due to people upload-
ing many gigantic datasets, more celery processes can be created to be
able to process multiple tasks concurrently. Celery requires the use of a
message broker, and for this purpose we deploy Redis3, which can also
conveniently be used by Django as a cache backend.

Django, PostgreSQL, celery and Redis all have to run separately to serve
the application. To ease the deployment of all these components, we
use Docker Compose4 to run every part in its own container and to al-
low starting and stopping all containers at the same time, while working
across different host platforms. A diagram of this architecture has been
provided at figure 4.2.

2https://github.com/celery/celery
3https://redis.io/
4https://docs.docker.com/compose/

18 CHAPTER 4. GLOBAL AND ARCHITECTURAL DESIGN

Figure 4.2: Overview of the system components and their interactions

Code Structure

The Django framework makes use of the Model-View-Template paradigm,
which is a variation on the common Model-View-Controller design pat-
tern. The result is that Django programs are naturally split up into multi-
ple Python files, each with a distinct and clear-cut purpose. Because all
Django programs tend to be structured in the same way, programmers
familiar with the framework will be able to understand the code structure
of the project.

The ’models.py’ file defines all necessary classes that will be converted
to database tables by the Django object-relational mapper5, and are used
to store data required for the functioning of the application. The ’views.py’
file contains the logic that is executed whenever an HTTP request if sent
by a user and handles permissions checks as well as database updates.
Finally, the view function uses one of the templates stored in the appli-
cation’s ’templates’ directory to render an appropriate HTML response.
These templates contain HTML as well as the Django template language
to enable dynamic displaying of page content. There is also the ’urls.py’
file, which determines which view is called based on the url in the client’s
HTTP request. The ’forms.py’ file contains classes that are used to auto-
generate HTML forms, such as the form used for creating new tasks.

All the aforementioned python files and their functions are used by any
Django application, and so this structure is not unique to the Data La-
beling Platform. However, the project uses celery (see the previous sub-
section) for asynchronous task execution, and all code to be executed by
celery is located in ’tasks.py’. This setup is normal for Django projects

5https://docs.djangoproject.com/en/4.1/topics/db/models/

4.2. PRELIMINARY DESIGN CHOICES 19

that use celery.

Although Django provides a relatively straightforward way to structure ev-
ery project, there are still some choices to be made regarding the writing
of views. Namely, views can be written as Python classes or as regular
Python functions (also called generic views)6. For this project we chose to
use a mixture of class-based and function-based views depending on the
complexity of the views in question. Ultimately, this resulted in the use of
class-based views for every page except for the task creation page (see
section 5.2.2) and the labeling page (section 5.2.6). Since these views
required a large amount of unique functionality, programming them using
generic views makes them more simple to understand.

6https://docs.djangoproject.com/en/4.1/topics/class-based-views/intro/

20 CHAPTER 4. GLOBAL AND ARCHITECTURAL DESIGN

Chapter 5

DETAILED DESIGN

This section explains the provided technicalities of the platform and its
descriptions. Likewise, the design options are identified and presented
on a more low level, including their justification.

5.1 System Description

5.1.1 Database Scheme

Django generates database tables based on Model classes defined in the
application. Figure 5.1 contains a diagram of the Django models, as gen-
erated by the Django plugin django-extensions1. It uses the Django field
names in lieu of SQL syntax, since the fields are automatically translated
into SQL columns by the Django object-relational mapper.

5.1.2 Dataset Processing

The imported and exported datasets need to be processed in the back-
end of the web-application. The imported dataset needs to be a CSV file
containing the text that needs to be labelled. The exported file is also in
CSV format which contains a labelled sentence per row. The datasets
can be quite large, this is why the processing of these datasets takes
place in the background of the application. This is done with the help of
Celery 2 processes. Because of this the server is able to maintain fast
response times.
The Celery process that takes care of the imported datasets cuts the
whole text into sentences. Subsequently, the sentences are cut up in

1https://django-extensions.readthedocs.io/en/latest/graph models.html
2https://docs.celeryq.dev/en/stable/index.html

21

22 CHAPTER 5. DETAILED DESIGN

Figure 5.1: Schematic showing the various Django models created for
the application, their attributes and relations between them.
The ’User’ model refers to the default Django user model.

5.2. FRONT-END COMPONENTS 23

words and punctuation. A sentence is stored in the database as a ”Dat-
apoint” belonging to a dataset. Words and punctuation are stored as
”Words” belonging to a datapoint. After this the dataset is ready to be
labelled.
After labelling is done or partially done the labelled datapoints can be
exported to a CSV file. This is also done in a separate process. From
the selected dataset all labelled datapoints are selected and written into
a CSV file with one labelled sentence per row. When the process is done
the CSV file can be downloaded.

5.1.3 Authorization Checks

To ensure that users can only access the part of the application that they
are supposed to, we added programmatic checks to every page that block
out unauthorized users.

We did this by adding test functions to every Django view in our appli-
cation, which allow us to determine which users are allowed to view the
page. For example, users that visit a dataset overview page (see sec-
tion 5.2.4) will need to have ’labeling access’ to the task to which the
dataset belongs. Having labeling access means that either they are the
task owner, the task owner has approved the user’s application, the owner
has manually invited the user, or the task is set to allow anyone to label.
Some other pages, such as the task editing page, are accessible only to
the task owner, and creating new tasks is only possible for university staff
members.

5.2 Front-end components

The users are not restricted in the number of datasets and tasks they can
create. Therefore the front-end is designed with dashboards in mind. The
design contains many redundant elements, making it possible to always
show the relevant information so the user does not have to go back and
forth between the pages. Additionally, the website is designed such that
the colors red, green, and yellow are only to be used for showing progress
or for the edit/delete buttons. By isolating those colors, it becomes trivial
for the user to efficiently gauge the overall progress.

24 CHAPTER 5. DETAILED DESIGN

5.2.1 Task list

Figure 5.2: List of tasks

The tasks are divided into two categories that are both displayed to
the user on the task list (see figure 5.2). First and foremost are the tasks
the user submitted for labeling, these are shown at the top so that the
user has easy access to the tasks that they prioritize. Each task has a
progress bar that adapts to the progress of the individual datasets in or-
der to provide a simple yet detailed overview of the progress. The users
can thus at a quick glance estimate how the tasks are progressing.

Secondly are the tasks the user is allowed to label. It is displayed at the
top for users that are not allowed to create labeling tasks. This section
follows the same design decision as above by prioritizing easy access.

5.2.2 Task creation page

The task creation page (see figure 5.3) serves a dual purpose as both
the page to create new tasks and also to edit existing tasks. The design
is kept simple and straightforward by using basic fields for the user to fill
in. The task creation is heavily involved with the back-end, therefore the
back-end is responsible for generating the forms.

5.2.3 Task overview

The task overview page (see figure 5.4) follows the dashboard structure.
It shows basic information about the task. Details about the datasets is

5.2. FRONT-END COMPONENTS 25

Figure 5.3: Task creation page

one of the important highlighted sections, containing easy to access links
to download both the original and export the labeled file. Thus in the
case where there are many datasets it is not needed to open each one
individually. The other important section allows the owner to see how
much time each labeler has spent, and how many datapoints they have
labeled.

5.2.4 Dataset overview

The dataset overview page (see figure 5.5 contains similar information
to the task overview page. It provides data that is only relevant to that
dataset, such as the processing status and the time spent by users label-
ing.

5.2.5 Datapoint list

See figure 5.6. The datasets can contain a vast number of datapoints,
thus it is important to display it in a condensed yet readable way. Data-
points that have been labeled are shown in green and can be expanded to
reveal the associated labels. There is a link that allows to quickly edit the
datapoint in the case of a mislabel. The unlabeled datapoints instead of
expanding when clicked instead immediately link to the labeling page for
that datapoint. It is designed such that every datapoint can be accessed
within two mouse clicks.

26 CHAPTER 5. DETAILED DESIGN

Figure 5.4: Task overview page

Figure 5.5: Dataset overview page

5.2.6 Labeling page

The word labeling page (see figure 5.7) is the heart of the platform,
therefore it is necessary for it to be both intuitive and efficient. Custom
javascript is used to allow for dynamic selection using the keyboard. In
order to correctly interact with the back-end, the javascript also ensures
that the generated form is filled in according to the restrictions.

The user can use the keyboard to change the currently selected sec-
tion of text using the arrow keys or tab. Alternatively the user could also
use the mouse and click on the text. For choosing which label to assign
the user can press the first letter of the label to quickly select it, use the
arrow keys or use the mouse to select the label from the list. By having
multiple ways of labeling it thus supports multiple workflows. For instance

5.2. FRONT-END COMPONENTS 27

Figure 5.6: Datapoint list

Figure 5.7: Word labeling page

by mixing the mouse and keyboard the user can use the arrows to move
the selection and the mouse to click on the label. By enabling this effi-
ciency it has the potential to save hours of work due to the possible scale
of the datasets.

5.2.7 Profile page

The profile page (figure 5.8) simply shows the tasks associated with the
user and the amount of total labeling done.

It is also designed to serve as a useful tool for evaluating prospective
labelers, by being able to see the tasks they have been assigned

28 CHAPTER 5. DETAILED DESIGN

Figure 5.8: User profile page

5.2.8 Task application page

Figure 5.9: Task application page

The task application page contains a list of all the tasks that the user
can send an application to.

The application itself contains a single text input form for writing the
application for a task. It is kept deliberately simple in order to reduce
bloat. For anything complicated the platform encourages email by having
the user contact information prominently visible.

Chapter 6

Testing the system

This chapter thoroughly examines the testing procedure and plan regard-
ing the platform and provides the testing results. The testing chapter
includes testing the heralded platform functionalities and explaining the
testing approach. However, the risks and concerns got indicated besides
the testing criteria.

The platform design and functionalities changed based on the testing cri-
teria results, which were based on fixing the platform bugs and making
them practical and reliable. The testing approach got divided into two sec-
tions. The first section is usability testing, and the second is integration
testing.

6.1 Usability testing

The testing approach for the data labeling platform got based on user sce-
narios. Since university members use the platform, this testing got done
by letting the university students use the platform, try every functionality,
and go through every scenario. The testing scenarios got divided into
two parts. The first part was written scenarios by the developers asking
the users to go through some functionalities and perform some actions to
see if they contained bugs.

The second testing scenario was letting the users try the platform as
they wanted and go through every page and each functionality. However,
through the usability testing, there were aspects to concentrate upon.
Such as that, the system should always inform the user about its current
situation via feedback. Moreover, the system clarifies the user’s under-

29

30 CHAPTER 6. TESTING THE SYSTEM

standing of how to use and operate this platform. Lastly, ensure that the
system design is aesthetic and contains helpful documentation for pro-
viding user help.

6.2 Integration testing

Integration testing is essential for providing a bug-free platform. Each
platform’s functionality can operate as expected; however, problems can
occur when integrating these functionalities within the platform. To en-
sure a fully functional system, interaction testing is necessary to address
bugs during the later phases of the platform development. The integra-
tion testing approach will be usability testing as the user goes through the
entire platform and use every functionality.

Chapter 7

Future Planning

Although the platform’s development as a part of the design project will
cease at the end of the module, it was designed with extensibility in mind.
This chapter discusses the future development that can get applied to the
platform.

7.1 Use and Support of the System

The platform is designed in a web-hosting compatible way, the University
of Twente can therefore host the platform without much difficulty. In order
to have a seamless integration it would require some initial support and
on-boarding. Over time, there would also need to be maintenance for
bugs and other issues appearing during its operation. In order to fully
support the university members, the platform needs to be scaled up to
provide more efficiency.

7.2 University wide Enrolment

The development of the platform contained the vision of making the plat-
form easy to scale and support all the university faculties. The adminis-
trators can add and remove facilities and members easily to the platform.
Therefore, the platform is easy to deploy without much effort and in small
steps. Administrators can add or remove the users to the platform by fill-
ing in their university ID as a username, then add the user can log in with
their university credentials.

31

32 CHAPTER 7. FUTURE PLANNING

7.3 Text labeling extension

The current text labeling is based on words, associating one label with
each word. It can be further improved to provide other tools such as
labeling based on the highlighted part of the text. Other changes to text
labeling tasks, such as the support for multiple labels per word, would
also be possible.

7.4 Image labeling

The platform can be extended further to allow for tasks other than text
labeling. With the modularity of the platform any type of labeling can po-
tentially be added by providing a custom user-facing web interface. Since
image classification is another important data labeling task, it has been
partially integrated into the platform already. The csv export functionality
has not yet been implemented for image labeling, and both the label-
ing page and datapoint list pages do not yet conform to the rest of the
project’s graphical design decisions. However, these functions could be
implemented in the future.

The manual (see Appendix C) contains detailed instructions on how to
extend the platform by implementing additional labeling tasks.

Chapter 8

Evaluation

This chapter discusses the overall evaluation of the project by elaborating
on its planning, evaluating the project team, and the final result.

8.1 Planning

The project planning has been strict since the first day. The workload has
been distributed throughout the entire module and divided into tasks per
member for each week. The team decided to work on setting up weekly
deadlines. The progress and the project’s planning, including the dead-
lines, were monitored using Google Drive using a SCRUM board.

There was a weekly scheduled meeting with the client. This meeting
is for discussing the progress and requesting client feedback regarding
the platform and the platform design with the opportunity to add new re-
quirements.

The team’s weekly deadlines were set far before the client’s deadlines.
So the team can read and rewrite the documents to improve the deliver-
ables’ quality and fix all the platform bugs. Consequently, This planning
ensured that the work was equally distributed and high-quality hand-in
documents.

8.2 Responsibilities

The team members have different interests and expertise, dividing the
project into tasks and responsibilities based on their knowledge and in-
terests. These assigned responsibilities got primarily based on the team

33

34 CHAPTER 8. EVALUATION

members’ interests.

8.3 Team Evaluation

The project team contains the difference in the work attitude leading to
arguments among the team at the beginning of the project. Therefore,
the group agreed to have a team evaluation session every four weeks to
discuss the differences in attitude and to reach an agreement with the
entire team. These sessions solved and prevented these arguments, and
it was sufficient.

8.4 Final Result

It ensures that the platform got accomplished by Customer Intimacy—the
project resulted in an easy-to-use platform created by collaboration with
the client in every platform aspect. However, the client feedback through-
out the project process resulted in the creation of a very well-functioning
platform that does not contain unnecessary functions because the client
approves the entire operations and design of the platform.

8.5 Conclusion

At the beginning of the project, the team building activity got scheduled
to aid team spirit. This activity had significantly valuable for the team to
meet regularly. Moreover, the project planning ensured strict regarding
the platform system, and deliverables were finalized and handed in on
time.

The project’s purpose was to deliver a university platform that empha-
sizes its usability and the ease of labeling data and as mentioned before.
Besides, the project’s goal is to provide a bug-free completed platform
that the university can use without trouble.

As stated earlier, the project resulted in a working platform meeting the
client and user requirements and expectations and is ready to be hosted
by the university.

Appendix A

Source code

A.1 Link to the source code

https://gitlab.utwente.nl/s2014203/m11-design-project

35

https://gitlab.utwente.nl/s2014203/m11-design-project

36 APPENDIX A. SOURCE CODE

Appendix B

Design Diary

This chapter is about the proposal of the platform regarding the client.
The platform proposal got divided into phases in sequential order in this
chapter.

B.1 Requirements Proposal

The start of the project was by meeting with the client. This meeting was
to determine the goal and scope of the project. The client proposed his
requirements for the project. However, the meeting went as a discussion
for submitting better requirements and design. Therefore there was room
for ideas. However, the client did not have requirements regarding the
project’s design. So, we proposed the design to be similar to the uni-
versity platforms because it is a university platform that is easier to use.
Nevertheless, The client had to express his preferences and use these
requirements as a guide for the project.

B.2 Mock-ups Proposal

The project requirements was used to create a prototype for the client.
They presented mock-ups to the client, and the client considered formu-
lating the criteria for development. Moreover, the client proposed new
requirements and designs for the project. Afterward, a meeting got held
after offering the new provisions concerning the mock-ups and the lay-
out. This meeting was to finalize the questions regarding the mock-ups.
Despite that, the client had the opportunity to set more requirements and
ideas for improvements regarding the final project.

37

38 APPENDIX B. DESIGN DIARY

B.3 System Introduction

The platform was presented to the client halfway through the develop-
ment of the platform. The client got to see and observe the platform
through diagrams and videos. Moreover, the client could interact with
the platform on a laptop and experience every feature. Furthermore, the
users previewed videos of the system ruining and going through every
feature. The interaction with the platform allowed the client to experience
his requirements and ask for more improvements and developments.

B.4 Usability Tests

The usability tests got performed with the clients and students from the
university. The test scenarios got created so the user could operate on
the platform normally and experience every feature. This scenario de-
tected any bugs or parts of the platform that needed development. There-
fore, this way of testing was valid and valuable for the daily usage of the
platform. Nonetheless, the tester had the opportunity to test and com-
ment on anything that stood out to help the team develop the platform.

B.5 Proposal Presentation

The platform got presented to the client and students of the university.
The presentation showed the platform, and it is value and usability of
the platform. It also demonstrated the resulting platform to the university
members as it would be helpful and valuable.

B.6 Results of meetings

The meeting resulted in valuable and helpful feedback.

The mock-up meeting was crucial for the client to observe what the plat-
form would resemble. The mock-up meeting enabled the client to provide
more overall requirements and details regarding the project. Last, the
client expressed his preferences regarding the mock-up and design for
providing the asked platform.

B.6. RESULTS OF MEETINGS 39

The platform introduction proved very useful as the client experienced
the platform functionality and went through the entire platform, giving him
the impression of what the platform would be. However, it enabled the
client to provide more specific feedback regarding the platform and more
detailed comments on how to improve and make it more efficient.

DLP Manual
Introduction 2

Administrator Manual 2
Running the application 2

1. Setting up Google OAuth 2
2. Running the application using Docker Compose 2
3. Applying database migrations 2

Deploying the application in a production environment 2
Word Labeling tasks: Import / Export format 3
Extending the platform 4

Editing templates 4
Adding additional labeling tasks 4
Integrating email 6
Changing the authentication backend 6

References 7

1

Administrator Manual

Running the application

1. Setting up Google OAuth
Follow the steps from the django-allauth documentation for registering an OAuth application. By
registering using a UTwente account, the application can be set to 'Internal' under the 'OAuth
Consent Screen' settings to restrict logins members of the UTwente organization. As
documented by django-allauth, a django setting 'SOCIALACCOUNT_PROVIDERS' (in the
./data_labeling_platform/data_labeling_platform/settings.py file) will need to be adjusted.

2. Running the application using Docker Compose
The entire stack can be run using Docker Compose. The docker compose file at
./docker-compose.yml can be used to run all necessary containers. The application will listen on
http://127.0.0.1:8000/ by default. This will run all required components for the application, but
database migrations will still need to be applied before the application can be used.

3. Applying database migrations
Django migrations will need to be generated and applied before Django can properly use the
PostgreSQL database that is used as part of the docker compose stack. This will need to be
done by executing shell commands from within the 'django' docker container. The Docker
documentation can be consulted for instructions on opening a bash shell within the container.
Once the shell is accessible, the command 'python3 manage.py makemigrations dlp &&
python3 manage.py migrate' will generate the required database migrations and apply them
immediately. These steps create the database tables used to store application data, and should
be repeated after changes are made that alter the database scheme required by django.

Deploying the application in a production environment
Some steps should be taken before the application is suited to run in production. You may want
to consult the documentation on Django settings.
1. The DEBUG setting must be set to False, and ALLOWED_HOSTS must be configured
appropriately.
2. The SOCIALACCOUNT_PROVIDERS must be setup correctly (see Setting up Google OAuth
above)
3. For security, the volume containing the application code should be mounted read-only in the
docker-compose configuration
4. A django SECRET_KEY value and Postgres database credentials should be generated and
kept secret. These can be passed to the application using environment variables. Using an
'env-file' and restricting its permissions could be done here.

2

https://django-allauth.readthedocs.io/en/latest/providers.html#google
https://docs.docker.com/compose/
https://docs.djangoproject.com/en/4.1/topics/migrations/
https://docs.docker.com/
https://docs.docker.com/
https://docs.djangoproject.com/en/4.1/ref/settings/

5. The application should be run using a production-ready server instead of the default test
server. See the documentation on deploying django
6. The front-end server should be configured to use SSL/HTTPS and to redirect unsecure
requests to HTTPS.

Word Labeling tasks: Import / Export format
To import a dataset you need to upload it in csv format. Inside the csv file should be the text you
want to label. The web application will tokenize the text using NLTK [1] and store it in the
database.

To export go to tasks and select your task, then click the export button for the dataset you want
to export. The exported file will be a csv file with labeled text in there. One row corresponds to
one sentence and every word or punctuation will be followed by its label. Example:

I like food. So, I eat food.

Will be labeled as:

(‘I’, ‘Label1);(‘like’, ‘Label2’);(‘food’, ’Label1’);(‘.’, ‘Label3’)
(‘So’, ‘Label1);(‘,’, Label3);(‘eat’, ’Label1’);(‘food’, ‘Label1’);(‘.’,’Label3’)

With Label1, Label2 and Label3 being random labels.

Maintenance using the administrative interface

An administrator account can optionally be created to allow maintainers full access to change
application objects using a web interface. By executing the command 'python3 manage.py
createsuperuser' inside the 'django' docker container, a special account can be created that can
login on http://127.0.0.1:8000/admin/ for maintenance purposes. Through the admin interface, a
superuser account can manually create, edit or delete all application-related objects without
having to query the postgresql database itself.
This can be useful, for example, to manually restrict certain accounts from logging in (banning
them from the service) or explicitly granting 'staff' permissions to a university student, allowing
them to create their own tasks and upload datasets.

Extending the platform

The data labeling platform can be extended and changed to fit the university’s needs. This
process requires some knowledge of the Django framework. Fortunately, Django provides

3

https://docs.djangoproject.com/en/4.1/howto/deployment/

extensive documentation and Django projects are often structured in a similar way due to the
Model-View-Template architecture employed by the framework. In the following sections, we will
provide some exemplary ways of extending the application.

Editing templates

The most straightforward way to change the look of the application’s pages is to edit the html
templates. For example, the dashboard page can be changed by editing the file
‘data_labeling_platform/templates/dlp/index.html’ in the project’s source code. The template files
contain html that is displayed in the front-end but use the Django Template Language to support
programmatic changes to the displayed information.

Adding additional labeling tasks

The platform can be extended to allow for many more labeling tasks. For every labeling task
that needs to be added, a number of steps should be taken to fully integrate it into the platform.

1. Create a new task category
In the file ‘data_labeling_platform/dlp/models.py’, within the enumeration class Task.Category, a
new attribute should be added. The identifier will be used to refer to the category within the
code, and its value should be a tuple containing the enumeration integer as well as the
human-readable string. For demonstration, the category ‘EXAMPLE_TASK’ is added below:

File: ‘data_labeling_platform/dlp/models.py’
[...]
class Task(models.Model):

"""Data labeling task as created by a staff member. Can have multiple
datasets"""

[...]
class Category(models.IntegerChoices):

"""Possible choices for the task category"""
WORD_LABELING = 0, 'Word Labeling'
IMAGE_CLASSIFICATION = 1, 'Image classification'
EXAMPLE_TASK = 2, 'Example task'

[...]

2. Create database models for the new labeling task
In the models.py file, some new model classes should be added so information specific to that
labeling task can be saved to the database. This can be as many models as desired, but should
have at least a model for saving (unlabeled) data contained in a user-uploaded dataset, and at
least one other model for saving labels or other information that is supplied by the labelers on
the platform.

4

https://docs.djangoproject.com/en/4.1/
https://docs.djangoproject.com/en/4.1/topics/templates/

3. Add a function for processing dataset uploads
In the file ‘data_labeling_platform/dlp/tasks.py’, define a new function that takes as its input
parameter a dataset object, and call this function from the process_dataset function as such:

@shared_task(bind=True)
def process_dataset(self, pk):

[...]
if dataset.task.category == Task.Category.WORD_LABELING:

process_word_labeling_dataset(dataset)
elif dataset.task.category == Task.Category.IMAGE_CLASSIFICATION:

process_dataset_image_classiciation(dataset)
elif dataset.task.category == Task.Category.EXAMPLE_TASK:

process_my_example_import_function(dataset)
else:
[...]

4. Create a template for displaying the datapoint list of the newly created task
In the template ‘data_labeling_platform/templates/dlp/datapoint_list.html’, provide html for the
datapoint list that is used for this labeling task. The django template language should be used
for dynamic content.

5. Create a template and view for the labeling page
In ‘data_labeling_platrofm/dlp/views.py’, expand the function labeling_view for the newly created
task category, by calling a new view that takes care of displaying the labeling form as well as
saving the labeled datapoints:
[...]
def labeling_view(request, pk: int) -> HttpResponse:

[...]
if datapoint.dataset.task.category == Task.Category.WORD_LABELING:

return word_labeling_view(request, datapoint)
elif datapoint.dataset.task.category == \

Task.Category.IMAGE_CLASSIFICATION:
return image_classification_view(request, datapoint)

elif datapoint.dataset.task.category == Task.Category.EXAMPLE_TASK:
return my_custom_example_labeling_view(request, datapoint)

[...]

6. Write a function for exporting the labeled data
Back in ‘data_labeling_platform/dlp/tasks.py’, expand the process_csv_export function to
account for the newly created task type. Add a check to the if/else statements like in the
previous steps that calls a custom function which returns a ContentFile.

After having implemented the aforementioned steps, the new task is integrated into the
application.

5

https://docs.djangoproject.com/en/4.1/ref/files/file/#django.core.files.base.ContentFile

Integrating email

Django can connect to an SMTP server to send emails, using its builtin email module. After
having set up an SMTP connection, the send_mail function can be used in views to notify users
about important events. For example, an application that a user makes to apply for a task could
be forwarded to the email of the task owner.

Changing the authentication backend

Currently, the application uses Google OAuth to authenticate users. However, the University can
change the authentication method for another if they please. Since the application does not use
any custom user model, the method of adding users can be swapped out for another. Since the
university uses SAML authentication on most of its domains, this can also be achieved in the
Data Labeling Platform by using a library such as django-saml2-auth. However, the SAML
authentication system requires having a dedicated server setup with its own domain name,
which is why we chose to stick to the Google authentication method during the initial
development phase.

6

https://docs.djangoproject.com/en/4.1/topics/email/
https://docs.djangoproject.com/en/4.1/topics/auth/customizing/#substituting-a-custom-user-model
https://en.wikipedia.org/wiki/SAML_2.0
https://github.com/fangli/django-saml2-auth

References

[1] Bird, S. (n.d.). Natural Language Processing with Python. O’Reilly Media.

https://www.nltk.org/book/

7

	Abstract
	Introduction
	Motivation
	Framework
	Goals of the platform
	Functional overview

	Domain Analysis
	Introduction to the Domain
	General Knowledge of the Domain
	Client, Users, and interested Parties
	Software Environment
	Procedures of the current situation
	Commonalities of UT Software
	Conclusions

	Methodology and Requirement Specification
	Agile Project Management
	Requirement prioritization
	Functional requirements
	Non-Functional Formulation
	Conclusions

	GLOBAL AND ARCHITECTURAL DESIGN
	Revised Work Process
	Preliminary Design Choices
	Programming Language
	Frameworks and Libraries
	Architectural Design Choices

	DETAILED DESIGN
	System Description
	Database Scheme
	Dataset Processing
	Authorization Checks

	Front-end components
	Task list
	Task creation page
	Task overview
	Dataset overview
	Datapoint list
	Labeling page
	Profile page
	Task application page

	Testing the system
	Usability testing
	Integration testing

	Future Planning
	Use and Support of the System
	University wide Enrolment
	Text labeling extension
	Image labeling

	Evaluation
	Planning
	Responsibilities
	Team Evaluation
	Final Result
	Conclusion

	Source code
	Link to the source code

	Design Diary
	Requirements Proposal
	Mock-ups Proposal
	System Introduction
	Usability Tests
	Proposal Presentation
	Results of meetings

